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TECHNICAL NOTE 2350 .

ON THE SECOND-ORDER TUNNEL-WALL-CONSTRICTION -CORRECTIONS
IN TWO-DIMENSTONAIL COMPRESSIEBLE FLOW

By E. B. Klunker and Keith C. Harder
SUMMARY

Solutions of the first- and second-order Prandtl-Busemann iteration
equations are obtained for the flow past thin, sharp-nose, symmetric,
two-dimensional bodies in closed channels. With the use of these solu-
tions an expression is derived for the tunnel-well interference. The
tunnel-wall correction for a parabolic-arc airfoil is calculated to
indicate the effects of compressibility, ratio of the tunnel height to
the airfoll chord, and airfoil thickness coefficient. It appears that,
for cases where the tunnel-wall corrections are significant, both the
second-order effects and the variation of the correction along the chord
should be consildered.

INTRODUCTION °

The use of wind tunnels for solving many aerodynamic problems in
the high-subsonic speed range mskes it desirable to reexamine the ques-
tion of tunnel-wall corrections. The general problem of tunnel-wall
interference in incompressible-flow fields hes been treated in refer-
ence 1. There the various types of interference are described and
equations are presented which permit the correction of wind-tunnel data
to free-flight conditions. These results may be carried over to include
the first-order effects of compressibility with the aid of the familiar
Prandtl-Glauert rule. (See reference 2, for example.) It is well-known,
however, that the linearized compressible-flow relations in general do
not describe the phenomena accurately at high-subsonic Mach numbers.

The exact analytical solution for the compressible flow past an
aerbitrary closed body has not been formulated; however, certain approxi-
mate methods prove useful for studying flow problems. The Rayleigh-
Janzen method, in which the initial step is the complete incompressible-
flow solution, has been used frequently for obtaining approximate solu-
tions to aserodynamic problems. In reference 3 the flow past a circular
cylinder in a tunnel has been obtained by this procedure. The Rayleigh-
Janzen method is -best sulted, however, for obtaining flows past relatively

\



2 NACA TN 2350

blunt profiles at low Mach numbers; hence, this method is not suitable
for evaluating the tunnel-wall interference for thin profiles at high-
subsonic Mach numbers. Solutions of flow problems by relaxation methods
have proved useful in many instances; this approach has been employed
in references It and 5 to evaluate the tunnel-wall-constriction correc-
tions for the NACA 0012 airfoil and the Kaplan bump, respectively.
Alfthough accurate solutions can be obtained by this method, lengthy
numerical calculations are involved and the result is confined to the
specific profile and channel configuration treated.

The Prendtl-Busemann small-disturbance iteration method has been
found. most useful in the evaluation of the flow over thin bodies in an
infinite stream. This method therefore is employed herein to evaluate
the second-order tunmnel-wall corrections for the flow past thin sym-
metric bodies at zero incidence. The third- and higher-order solutions
can also be obtained by this method although the labor involved becomes
prohibitive.

The wall-interference effects are often calculated from a suitable
system of images. Other approaches are possible, however, and in many
instances prove more convenient. In particular, an integral representa-
tion proves useful for evaluating some interference effects. This repre-
gsentation is employed herein to evaluate the wall interference (con--
striction effects) at subsonic speeds for a thin, two-dimensional, sym-
metric, sharp-nose body in a tunnel. The method is closely related to
the familiar source-sink concepts for evaluating the flow over a thin °
body in an unbounded stream. The extension of the source-sink concepts
to the solution of the second-order Prandtl-Busemann iteration equations
has been previously discussed in reference 6. The method of solution of
the interference problem to the second order thus parallels this work.
As an example of the use of the equationms developed hereln, the wall-
interference effects are evaluated for a symmetric parsbolic-arc airfoil
in a two-dimensional channel,

ANALYSIS

The exact nonlinear equation governing the two-dimensional flow of
a compressible fluid for the velocity potential &' 1is

2 utv? vt
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where

x', y! rectangular Cartesian coordinates in the flow plane

ut, v! velocity components along the x'- and y'-axes, respectively
a local speed of sound

and the subscripts x' and y' denote partial differentiation with
regpect to these designated variables. With the introduction of a
characteristic length c¢/2, where c¢ 1g the chord, and the undisturbed
stream veloclty U as the unit of veloclty, the potential equation may
be written in the nondimensional form

~

u uv v
-—)b,, - 2= +@-—¢ =Q 1)
(-2 2o+ (-5 (
_2}{' _zyl _ut ._vl _2¢t
where x = s Y=o u=Sgp V= T a?d o = 5

The Prandtl-Busemann iteration equations are developed from the
nonlinear potential equetion (1) (see reference T, for example) by
assuming that ¢ may be expanded in the form & =x+f + P+ . . .

vhere @,,1 and its derivatives are small compared to @, and @,

ig of the order +t2 where +t 1s the thickness coefficient of the air-
foil. With these assumptions the first two equations of the Prandtl-
Busemann iteration method are

BBy + Byyy = O | (2a)

P + Fayy = [0+ %y 9+ 0 ] (2)

2
‘where g = 7 ; 1 E%L, 32 =1 - Mu?, M, 1s the stream Mach number, and

=

vy 1is the ratio of specific heats at constant pressure and constant
volume.
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The constraint of the tunnel walls, or the tunnel-wall correction,
is expressed as the difference between the velocity at any point in the
flow in the tunnel and the velocity at the same point in an unbounded
stream. For aeronautical applications this velocity increment is of
interest primarily on the surface of the body, that is, for correcting
the surface pressures on & body in a wind tunnel to free-stream condi-
. tions. This tunnel correction on the surface of the body is found to
the second order by solving equations (2) subject to proper boundary
conditions. :

Throughout this paper a bar over a quantity (for example, 3)
represents the quantity in the chamnnel whereas the same quantity with-
out the bar (for example, &) denotes the quantity in an unbounded
stream. The differential equations (2) are, of course, the same for
the flow in the channel and in a free stream.: \

Boundary Conditions

Let the equations
Y = t¥q(x) (-1<x<1) (3a)
and \

Y=0 (x21; x<-1) (3b)

define a thin symmetric body of thickness coefficient + 1l1ying on the
X-axis between -1 and 1., Then the boundary conditions for the flow

over the body In an unbounded stream are:
At infinity

o =1 ’ ¢,.= 0 (h‘a)
and on the body
Oy (x,Y) = Y'0yu(x,Y) (kb)

vhere Y' denotes the slope dI/dx. For the flow over the body defined
by equations (3) in a tunnel (fig. 1) whose walls are at y' = ih' (or
y = th) the boundary conditions are: '
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At the tunnel wall

\

0y(x,h) = 0 (52)
on the body = . ,
Oy(x,Y) = Y'0x(x,Y) (5b)
and at x>
=1 , Fy=0 | (5¢)

The boundary conditions for $, and P, to the order t and t2,
respectlively, are: g

At infinity

f1x = f1y = 0 ‘ (62)
on the body

P1y(x,0) = ¥ '(6b)
and at infinity

Pox = Poy =0 (7a)
on the body

Boy(x,0) = £¥3'P14(x,0) + B2Y1P1 4 (x,0) ] (7p)

'Similarly, the boundary conditions for ‘ai and .52 to the order t
and t2, respectively, are: . .
As x%i'oo

ix = f1y = 0 | (8a)
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at the wall y =nh

Pry(x,m) =0 ~ (8v)
on the body
#1,(x,0) = t1y° (8c)
and as x> iw
Pox = _Ey =0 (92)
at the wall y =h
Boy(x,n) = 0 | ()
on the body
Boy(x,0) = t¥11P15(x,0) + BZEY1814x(x,0) (9¢c)

The solution of the nonhomogeneous second-order equation (2b) may
be expressed as the sum of a particular integral Vo(x,y) (or V¥o(x,y))

and a function o@o(x,y) (or ©o(x,y)) satisfying the homogeneous
equation ’ :

A

B0y + Poyy = O (10)

The particular integral for equation (2b) (reference 8) is

¥a(x,y) = Mw2¢:1_xl:(1 + %)551 -2 Y¢1£| (11)
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Then from equations (7) and (9) the boundery conditions for Po and
Po are: '

At Infinity

Pox = Poy = O
on the body |

Poy(x,0) = F(x) -
where

F(x) = 2601 'P14(x,0) + B26Y18100x(x,0) = M2Q + § )81 (x,0) 50 (x,0)

and at x—>Fw

Poy = Ppy = (12a)
at the wall y =h
Ppy(x,h) = £(x) , (12b)
on the body
Poy(x,0) = F(x) (12¢)
where

F(x) = B2tY; 16 ,(x,0) + B2tY P, (x,0) - Mf(l + %)tﬁl(x,o) E]xy(x,q)

T(x) =M,782 § hfy(x,h)f7 . (x,h)
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The tunnel-wall interference to the second order then is found from the
solution of equations (2) subject to the given boundary conditions.

Solution of the Boundary-Value Problem

First-order solution.- A solution of the first of equations (2)

for ¢l, sa.tisfying the first two boundary conditions of equations (8),
is, for y 2 O,

(y - b) ‘
(x,5) = - = da cosh Pa cos a(x - &) at
¢l el f f sinh Bah

from which

o © !
¢ly(x,0) = %j;) daf g(E)cos a(x -~ &) At (13)
. - 00
The body slope +tYq' may be represented by its Fourier integral as

w .l
tY1'(x) = %£ dafl Y1'(E)cos a(x - &) at (1%)

From equations (13) and (14) the boundary condition for ta.ngential flow
(equation (8c)) on the body is satisfied by choosing g(&) = -B— Y{*(E).

Thus the solution for @(x,y) is

@. R Ef cosh Ba(y - h) _ .
;¢1(x,y) = prd, aJ Yt (E) ik pot cos a(x - &) a4t

Inverting the order of integration and :Lntegrating with respect to «
gives

_ ol |
Pilx,y) = %fl Yq'(&)loge {Eil—z— cosh 2A(x - &) - cos EXB}Z]}G.E (15)
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where A = Egﬂu The solution @,(x,y) satisfying the boundary condi-

B . N
tions given by equations (6) may be found from equation (15) by letting
h approach infinity. Thus :

—_— & Jfl ' 5
Prloy) = Un Filoy) =g | 000 |- 07+ 2t (16)

which is the well-known solution for the flow past a symmetric body in
an unbounded stream by a distribution of sources.

With Auq = ﬁix(x,o) - P1x(x,0), the difference in velocity on the
body to the first order is

1
t 1
Aug = B—“fl 111(8)[n coth A(x - £) - gldf. (17)

X -

Thé first-order tunnel-wall correction to the X-component of
velocity on the body is given by equation (17). This solution was
obtained by considering the flow in the upper half-plane; the solution
in the lower half-plane is known by symmetry.

Second-order solution.- The second-order solution for the flow over
a symmetric body by an extension of the concepts of source-sink distribu-.
tions has been discussed in reference 6. The second-order solution Po

is given by fo = 9o + ¥ where ¢p satisfles the homogeneous equa-
tion (10) and Vo is the particular integral given by equation (11).
The form of the differential equation and boundary conditions for Po
are the same as for @y. Thus the solution for @, may be written
immediately as ’ :

g2 = = | F(Bioee J(x - 82+ 832 at + v,

and

] )
fort,0) = & | RO 2P0 )]0 1a(x,0) + $1,205,0)]

(18)
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(It should be noted that the second-order solutions given here are not
valid for blunt-nose profiles since for these cases the particular
integral introduces singularities which cannot be canceled by a source
distribution. )

The second-order golution for the flow over a gymmetric body in a
channel may be found in s manmer analogous to that for @;. Consider

the expression

1
5, = - X / da F h Ba(y - h)
cp?_-ﬁ o ?'/:1 F(E) coss aB \ cos a(x - &) at +

i\[ d_cc.f cosh Bay g a(x - &) 4t (19)
B @V _» sinh Bah

which is a solution of the homogeneous dlifferential equation (10). Since,
from equation (19),

p © 1
Ezy(x,o) =%f(\) da.[l F(E)cos al(x - &) at

Tay(on) <[ [ Fe)eos alx- 1)

- which equal TF(x) and T(x), respectively, by the Fourier integral
theorem, the boundary conditions of equations (12) on the body and at
the wall are satisfied. Inverting the order of integration of egua-
tion (19) and integrating with respect to a glves

o = 7 A - t) - -
Po = B J g F(t)loge - cosh 2A(x - E) - cos %Bﬂ} ag

A f(&)loge {—?[osh 2A(x - &) + cos 2)\.[333} ag

2Bx
from which the boundary conditions at infinity may be shown to be satisfied.
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The quantity ¢—2x(x,0) is found after some reduction as

Eac(x,m = E’—;—ji F(t) coth Mx - &) dt -

-~

E)ifm £(€) tenh M(x - £) d& + ¥px(x,0)  (20)

The second-order correction ‘to the velocity on the surface of a
body in a wind tunnel is

Au = Mg + Aup + O(t3)
where

Auy = le(X:O) - P1x(x,0)

Auy = a&(x,O) = ¢2x(x,0)

or from equations (17), (18), and (20)

Bx -

g Nt 1
Au =_f Y;'(E)|» coth AM(x - £) - :ldf. +
1 X- ¢

1 P ,
A = _ _ Lf r - -
B_ﬂf_l 5(8) cotn M(x - 8) @t - g | B(8) ben Mx - £) a8

1 at
— F(E
Bﬁ —l ()x-§+

Muo2<l + %)E‘-l(x:o)zm(xyo) +‘alx2(x:0) -~ $1(x,0)P1xx(x,0) -

¢1x2(x,o)] + o(t3) | (21)
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Throughout this paper the Cauchy principal value of all improper integrals
is to be taken.

" Discussion of the Equations

The tunnel-wall-interference effects are often evaluated by con-
sldering a suitable system of images. (See references 1 and 2, for
example.) The first-order equations developed previously are consistent
with this approach. An expansion for coth A(x - £) (see reference 9,
for example) is

y

00

1 L, AMx - &)

coth Mx - &) = — =
AMx - E) n=1 n°x® + Xz(x - t)2

Then, from equation (17),

\ a2t S o A(x - 8)
Ay = == flx () at
L B n=1 V-1 1 A2(x - £)2 + n®x?

which is recognized as the influence of source-sink images located at
Yy = %F. The series appearing in the expression for Auy is uniformly
convergent; hence the term-by-term integration is valid.

The calculation of the tunnel-wall interference for a given profile
requires the evaluation of several Integrals. The integrals occurring
in equation (21) are not easily evaluated for most profiles and it is

preferable to expand the integrands in the form of a series. The series
glven previously, however, is not the most useful. The expangions

-
2n, 2n
A coth A(x - E) = + Z (-1 )n-l 27"MBy (x - §)2n-l
n=1 T (2n):
(2e(x - £)2 < n2)
tanh X(X - g) Z( l)n-l ( - l))» Bn ( )2'0.—.1
n=1 (Qn)t
(xz(x - £)%< 1‘,?) _J
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(see reference 10, for example), where the coefficients B, are the
Bernoulll numbers, are better suited for calculation since the integra-
tions are more easily performed. Moreover these alternating series
converge rapidly and in most cases only a few terms need be retained.

With the use of the relations (22) the first-order correction to
the velocity on the body is determined from equation (17) as

(=)

2n, 2n
_ ln..]_2 A. Bn ' g) _ g 2n..
1" pa Zn:l ) ~ (2n)? e

(A2(x - £)2 < x?) (23)

or, after integration by parts,

' 1 o2m2n(s, _ 1 '
Ay = Z (-1 )n 1 28 (;2;1' 1)Bn\/il Yl(E,)(X _ §)2n—2d§

(A2(x - ﬁ)? < x°)

Thus the first term is proportional to the area of the body and the
remaining terms are in a form convenient for graphical integration.

Similarly, to the second order, the correction to the surface
velocity is

Au =EtE S ()t o

n=1 (en)!?

n. 2n
z f ¥y 1 (8) (x - 8)2 e +

L
-1 - ]
}_2 (_n i Y F(§)'(x—§)2n1d§+ﬁiﬁflfﬁi;§(_§ld§+

Pt =1 (en)! V.1

() (x - &) a +

1 _,yn-1 2%8(220 - 1)XEney
pr g -1~ (on)? -1

Mmg(l + -g—)[;l(x,O)Em(x,O) + ES'lxz'(x,o) - $1(x,0)P13x(x,0) -

¢lx2(x’0£l + 0(+3)
. 2
éz(x - £)2 < ’—‘h—) (24)
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The quantities -5i, §,, and their derivatives required to evaluate the
functions F, F, and f as well as the particular integral may be

found from the equations (15) and (16). These quantities can be expressed
in series form with the use of the relations (22).

The range of integration for the integral containing (&) should
extend from -» to . The series employed, however, does not converge
over this entire range. The contribution of this integral is small
outside the range -1 to 1; hence, with good approximation, the inte-
gration may be taken from -1 to 1. In some cases the contribution
of the integral involving F(£) is so small that it may be neglected

: §§Elx - g|‘< .
Since the maximum value of x - & 1is the chord, the series form for the
correction is applicable to cases where the chord is less than Vl - Mmé
times the tunnel height. When the integral involving (&) 1s considered,
the series solution is applicable to cases where the chord is less than

l‘/ 2
5 1l - M, times the tunnel height.

altogether. In this case, equetion (24) converges .for

The constriction effects for an open tunnel may be found by an
analysis similar to that given for the closed tunnel. Here the boundary
condition of zero normal velocity at the wall is replaced by the con-
dition of constant pressure along the jet boundary. To the first order
the jet boundary is located at y' = h'. However, for the second-order
golution the boundary condition must be satisfied on the Jet boundary.
The location of this boundary for the second-order solution may be
determined from the first-order velocities at y* = h'. The fact that
the ordinate of the jet boundary, is not a constant and is initially
unknown for any iteration higher than the first maskes the solution of
this problem more tedious than that for the closed tunnel.

TUNNEL-WALL CORRECTIONS FOR A SYMMETRIC PARABOLIC-ARC ATRFOIL

As an example of the use of the equations developed herein, the
tunnel-wall corrections are evaluated for a parabolic-arc airfoil. This
profile proves convenient since the first-order wall corrections can be
obtained in terms of tabulated functions. Thus the rapidity of convergence
of the alternating-series form of solution is readily ascertained by
comparison with this solution. .

The parabolic-arc sirfoll is defined by the equation

Y(x)

]

tY1(x) = (1 - x2) 7 (-1 < x< 1)

=0 (x>1; x< -1)
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From equation (16) the u-component of velocity on the airfoil in an
unbounded stream is given to the first order as

ay =t ff Y2'(8) 4

=1l x- ¢

=2t
Bﬂ2+x log,

l -x
l+x|> ) - (25)

where P denotes the Cauchy principal value.  From equation (15) the
U-component of velocity on the airfoil in the tunnel is

1
m - f’f_l Y, (E)coth A(x - &) at = - —ff t cotn M(x - t)at

and, after an integration by parts,
2t 1
l:-B_“@fl'loge |ston A(x - &) | at

:z loge lsinh AMx - l)l + loge 'Isinh rMx + l)ﬂ

Writing the hyperbolic sine in terms of exponentials, making a change
of variable, and performing the elementary integrations gives

T = - B'X—ff Loge |wl dw+§-ti-E.oge lsinh AMx - 1)' +

w-1

loge [simh M(x + 1)| - 2A.x+210ge£l
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Where
w=1- e-2k(x—§)
a=1 - e-2).(x+l)

b =1 - e~ Mx1)

The Spence integral is defined by

* loge | x!|
Ri(x) = —oe 1= ® dx!
1 xr -1

Thus with the use of this integral and equation (25) the tunnel-wall
correction to the velocity is
Xl (26)
1+ x

The Spence Integral is tabulated for positive values of x in
reference 11. The limit b i1s negative for all velues of- x for

A 2 0. However it is easily shown that the value of the Spence integral
for negative values of the argument is given by the relation

Muy = ﬁ_;z_ﬁEz(a) - Rl(b)] + B% loge |s1nh AMx - 1)| +

1oge|sinhx(x+1)] - 2x + 2 loge 2 = 2 - X logg

R1(-x) = % R1(x?) - Ri(x) + %Rz(o)

The first-order solution for the tunnel-wall correction in series
form is found from equation (26) as -

auy = - 2 Z (c)n L ZEATB [T ey
(en)! “-1

Z (-1)*t G E; C1)P(x 4 2n) - (x & 1)R(x - 2nz|

n=1 (en)!n(2n + 1)
' (27)
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i

Similar series expressions for ¢l, ¢l, and their derivatives are

easily found. Then, with the use of these firgt-order solutions, the
functions F(§) and F(%) may be evaluated. The integral involving
the function f(&) is very small and may be neglected. The tunnel-

wall correction to the second order is then found from equation (24).

RESULTS AND DISCUSSION

[

The first-order constriction correction to the x-component of
velocity at the surface of a symmetric parabolic-arc airfoil in a wind
tunnel is shown in figures 2 and 3 for several ratios of tunnel height
to chord. It appears, at least for the parsbolic-arc ailrfoil, that
the error made in neglecting the variation of interference-velocity
correction along the chord is small provided the chord is much less
than the tunnel height and the Mach number is small. For these cases,
the constant term of equation (23) gives a good value for the correction.
However, these are Jjust the cases for which the correction is so small
that it i1s often neglected. For cases where the correction is signifi-
cant (large Mach numbers and/or small ratios of tunnel height to chord),
the error made in neglecting the variation of velocity correction along
the chord may be 10 to 15 percent. Comparison of the correction (fig. 2)
given by equation (26) with that given by equation (23) indicates good
convergence of the series solution. The proper value of the correction
1s zero at a stagnation point. The fact that the correction does not
approach zero at the stagnation points gives another ‘example of the
inability of this approximate theory to represent adequately the flow
in these regions.

A series for the first-order correction to the velocity is given
by equation (23); the first term gives the often-quoted result that the
tunnel-wall correction varies as l/B3, whereas succeeding terms contain
other powers of B. The constriction correction to the second-order for
the parabolic-arc airfoil at midchord is shown in figure 3. It is of
interest to note that the correction, to the second_order, at the mid-
chord varies with Mach number approximately as l/B3, the gecond-order
correction being about 20 percent higher for t = 0.1 and about 40 per-
cent higher for t = 0.2. It therefore appears that the second-order
correction should be considered for test conditions where the first-
order.correction is significant.

The constriction corrections commonly employed to correct tunnel
force or pressure data are applied to the stream velocity and hence to
the dynamic pressure, Mach number, and so forth since the correction has
a constant value over the chord. On the other hand, the corrections
developed herein vary over the chord of the airfoil and consequently
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they must be employed locally to correct the surface velocity or pressures.
These second-order constriction corrections are more accurate than those
normally employed but their calculation and use entails more labor.

Langley Aeronauticai Laboratory
National Advisory Committee for Aeranautics
Lengley Field, Va., February 2, 1951
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Figure 1.~ Body in a two-dimensional channel,
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